mTOR y rapamicina en los TEA

mTOR no tiene nada que ver con la mitología nórdica, son las siglas de una proteína que corresponden a «mammalian target of rapamycin» o «diana de rapamicina en células de mamífero». mTOR interviene en importantes procesos celulares, incluyendo el crecimiento, la proliferación, la motilidad, la supervivencia, la síntesis de proteínas, la transcripción y la autofagia.

La historia de la rapamicina es tan sugerente que no puedo evitar mencionarla: en la década de 1960 se hizo una expedición a la Isla de Pascua -conocida por los habitantes de la isla como Rapa Nui-, con el objetivo de identificar productos naturales de las plantas y el suelo con posible potencial terapéutico. En 1972, Suren Sehgal identificó en esas muestras una pequeña molécula procedente de la bacteria del suelo Streptomyces hygroscopicus, que purificó y vio que poseía una potente actividad antifúngica. La denominó rapamicina y las pruebas posteriores revelaron que también tenía una potente actividad inmunosupresora y citostática contra el cáncer. Se utiliza en la actualidad para los trasplantados de riñón.

Aunque los TEA presentan una gran heterogeneidad genética y clínica, varios síndromes de TEA están causados por mutaciones en genes que codifican proteínas que inhiben mTOR; es decir, esas mutaciones hacen perder la inhibición y generan una hiperactividad de mTOR. Entre estos genes están Tsc1/Tsc2, NF1 y Pten. La mTOR es un regulador clave de la síntesis de proteínas sinápticas, y las aberraciones en la señalización de la mTOR se han vinculado a las anomalías sinápticas y neuroanatómicas que se observan en los TEA sindrómicos (por ejemplo, la esclerosis tuberosa) e idiopáticos. Entre las proteínas implicadas y que también se han relacionado con el TEA están SHANK3, FMRP y los receptores de glutamato mGluR1/5.

La mTOR está implicada en la formación de autofagosomas, unas vesículas citoplasmáticas que sirven para capturar y transportar componentes celulares a los lisosomas y allí destruirlos. Este proceso, conocido como autofagia o macroautofagia, es importante para eliminar los orgánulos dañados y degradar las proteínas de larga vida o propensas a formar agregados. La activación de mTOR inhibe la autofagia en un paso temprano de la formación de autofagosomas. Una teoría sobre el origen del TEA propone que se debe a una alteración de la autofagia por una hiperactivación de mTOR. Una conexión sería que las personas con TEA tienen más sinapsis, por una poda limitada y esa poda se produce por autofagia. La microglía se come las sinapsis no funcionales. Otra evidencia de conexión sería genética ya que en el TEA se han visto mutaciones de variación en el número de copias en genes que codifican proteínas implicadas en las vías autofágicas. En pocas palabras, el déficit en la poda de espinas se correlaciona con la hiperactivación de mTOR y el deterioro de la autofagia. Menos poda implica más espinas y eso es lo que se ve en las personas con autismo.

Otras investigaciones de los mecanismos implicados realizadas por Tang et al. (2014), sugieren que el excedente de espinas excitatorias observado podría ser el resultado de una alteración en la autofagia impulsada por mTOR y una poda de espinas deficiente, estableciendo así un vínculo entre una anomalía de la señalización neuronal en el TEA y las alteraciones sinápticas en estos trastornos.

En los ratones Tsc2 +/- , un modelo animal de TEA, y en los que mTOR está hiperactivo de forma constitutiva, Tang et al. (2014) observaron defectos en la poda postnatal de espinas, bloqueo de la autofagia y comportamientos sociales anómalos similares a los del TEA, lo que encaja con todo lo que hemos visto antes. Un resultado impactante es que la rapamicina, el inhibidor de mTOR, corrigió los comportamientos similares al TEA y los defectos de poda sináptica en estos ratones Tsc2 +/-. Los resultados de este artículo sugieren que la autofagia regulada por mTOR es necesaria para la poda de espinas en el desarrollo, y que la activación de la autofagia neuronal corrige la patología sináptica y los déficits de comportamiento social en modelos animales de TEA con mTOR hiperactivo.

Para determinar la presencia de alteraciones sinápticas en los mutantes Tsc2+/-, Pagani et al., (2021) midieron la densidad de espinas dendríticas en el córtex insular, una región relevante para la disfunción social en el autismo, y descubrieron que los ratones Tsc2+/- presentan una mayor densidad de espinas en comparación con sus compañeros de camada que servían de control. A continuación, usaron resonancia magnética funcional para mapear la conectividad de todo el cerebro en mutantes Tsc2+/- juveniles (P28). El uso de ratones prepúberes permite identificar un patrón de conectividad no afectado por la remodelación sináptica y de circuitos que se produce con la pubertad, y por tanto  sería más indicativa de los circuitos neuronales que caracterizan los síntomas tempranos en el TEA.

Finalmente, Pagani et al. (2021) trataron los ratones Tsc2+/- y los ratones control con rapamicina, el inhibidor de mTOR, durante su cuarta semana postnatal. La cuantificación de la densidad de espinas dendríticas reveló que el tratamiento con rapamicina redujo  la densidad de espinas en los ratones Tsc2+/- hasta retornar a niveles comparables a los de los ratones Tsc2+/+ de control (P < 0,001). Sorprendentemente, la resonancia magnética funcional de los ratones Tsc2+/- tratados con rapamicina también reveló un rescate completo del fenotipo de hiperconectividad, lo que implica una marcada reducción de la conectividad funcional de largo alcance en las mismas regiones de la corteza y el estriado que se caracterizan por la hiperconectividad en los mutantes Tsc2+/- tratados con vehículo. En consonancia con esto, la rapamicina también rescató la conectividad de la red por defecto y la red de saliencia en los ratones Tsc2+/-. Estos resultados corroboran la especificidad del mecanismo, apoyan un vínculo causal entre la patología sináptica dependiente de mTOR y la hiperconectividad en los ratones Tsc2+/- y plantean una posibilidad de terapia farmacológica, el uso de la rapamicina.

Para leer más:

  • Pagani M, Barsotti N, Bertero A, Trakoshis S, Ulysse L, Locarno A, Miseviciute I, De Felice A, Canella C, Supekar K, Galbusera A, Menon V, Tonini R, Deco G, Lombardo MV, Pasqualetti M, Gozzi A (2021) mTOR-related synaptic pathology causes autism spectrum disorder-associated functional hyperconnectivity. Nat Commun 12(1): 6084.
  • Tang G, Gudsnuk K, Kuo SH, Cotrina ML, Rosoklija G, Sosunov A, Sonders MS, Kanter E, Castagna C, Yamamoto A, Yue Z, Arancio O, Peterson BS, Champagne F, Dwork AJ, Goldman J, Sulzer D (2014)  Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron 83: 1131–1143.

José Ramón Alonso

CATEDRÁTICO EN LA Universidad de Salamanca

Neurocientífico: Producción científica

ORCIDLensScopusWebofScienceScholar

BNEDialNetGredosLibrary of Congress


Una respuesta a «mTOR y rapamicina en los TEA»

  1. Avatar de Percy Emilio Salsavilca Paucar
    Percy Emilio Salsavilca Paucar

    Muchas gracias por compartir.
    Espero que pronto sea posible hacer estudios en humanos, si es que no los están haciendo ya; de funcionar como usted describe también en humanos ayudaría en mucho en la recuperación de personas con Autismo como mu hijo Mario. Ojalá le sea útil a él también cuando ya pueda ser prescrito.
    Seguiré atento a sus publicaciones.
    Gracias nuevamente y tengan muy buen día.

Muchas gracias por comentar


Artículos relacionados

A %d blogueros les gusta esto: